relay SSANGYONG KORANDO 1997 Service Repair Manual
[x] Cancel search | Manufacturer: SSANGYONG, Model Year: 1997, Model line: KORANDO, Model: SSANGYONG KORANDO 1997Pages: 2053, PDF Size: 88.33 MB
Page 164 of 2053

D AEW OO M Y_2000
SECTION 1F1
ENGINE CONTROLS
CAUTION: Disconnect the negative battery cable before removing or installing any electrical unit or when a
tool or equipment could easily come in contact with exposed electrical terminals. Disconnecting this cable
will help prevent personal injury and damage to the vehicle. The ignition must also be in LOCK unless other -
wise noted.
TABLE OF CONTENTS
Engine and ECM Problem Check Report 1F1 -- 2....
Specifications 1F1 -- 3............................
Engine Data Display Table 1F1 -- 3.................
Fastener Tightening Specifications 1F1 -- 4..........
Fuel System Specification 1F1 -- 5.................
Temperature vs Resistance 1F1 -- 5................
Special Tools and Equipment 1F1 -- 6..............
Special Tools Table 1F1 -- 6.......................
Schematic and Routing Diagrams 1F1 -- 7..........
ECM Wiring Diagram
(3.2L DOHC -- MSE 3.62S) 1F1 -- 7..............
Diagnosis 1F1 -- 14................................
Failure Code Diagnosis 1F1 -- 14.....................
Clearing Failure Codes 1F1 -- 14...................
Failure Codes Table 1F1 -- 14.....................
Ignition System 1F1 -- 18...........................
Ignition Coil 1F1 -- 20.............................
Crankshaft Position (CKP) Sensor 1F1 -- 22.........
Camshaft Position (CMP) Sensor 1F1 -- 26..........
Camshaft Actuator 1F1 -- 30......................
Knock Sensor (KS) 1F1 -- 32......................
Spark Plug 1F1 -- 34.............................
System Voltage 1F1 -- 38.........................
Ignition Switch 1F1 -- 39..........................
Fuel System 1F1 -- 40..............................
Fuel Pump 1F1 -- 42.............................
Fuel Injector 1F1 -- 46............................
Purge Control Valve 1F1 -- 50.....................
Fuel Rail 1F1 -- 52...............................
Fuel Pressure Regulator 1F1 -- 54.................
Induction System 1F1 -- 56..........................
Throttle Valve Actuator 1F1 -- 56...................
Hot Film Air Mass (HFM) Sensor 1F1 -- 60..........
Engine Coolant Temperature (ECT) Sensor 1F1 -- 64.
Accelerator Pedal Module 1F1 -- 68................
Clutch Switch 1F1 -- 71...........................Cooling Fan 1F1 -- 72............................
A/C Compressor Relay 1F1 -- 73...................
Cruise Control Switch 1F1 -- 74....................
Traction Control System (TCS) 1F1 -- 75............
Resonance Flap 1F1 -- 76.........................
Stop Lamp Switch 1F1 -- 77.......................
Engine RPM 1F1 -- 78............................
Exhaust System 1F1 -- 79...........................
Catalytic Converter 1F1 -- 79......................
Oxygen Sensor 1F1 -- 80.........................
Engine Control Module 1F1 -- 86.....................
Serial Data Communication 1F1--88...............
Internal Failure 1F1 -- 90..........................
Electronic Throttle Controller Safety
Malfunction 1F1 -- 92...........................
Immobilizer 1F1 -- 94.............................
Maintenance and Repair 1F1 -- 95..................
On -- Vehicle Service 1F1 -- 95........................
Discharging the Pressure in Fuel System 1F1 -- 95...
Fuel Pump 1F1 -- 95.............................
Fuel Filter 1F1 -- 96..............................
Fuel Tank 1F1 -- 97..............................
Fuel Pressure Regulator 1F1 -- 98.................
Fuel Rail and Injector 1F1 -- 99....................
Engine Coolant Temperature Sensor 1F1 -- 100......
Throttle Body (Integrated with the
Actuator) 1F1 -- 101............................
Hot Film Air Mass (HFM) Sensor 1F1 -- 102.........
Knock Sensor 1F1 -- 102..........................
Pedal Position Sensor 1F1 -- 103...................
Oxygen Sensor 1F1 -- 103........................
Purge Control Valve 1F1 -- 104....................
Canister 1F1 -- 104...............................
Camshaft Position Sensor 1F1 -- 104...............
Crankshaft Position Sensor 1F1 -- 105..............
Engine Control Module 1F1 -- 105..................
Page 177 of 2053

1F1 -- 14 M162 ENGINE CONTROLS
D AEW OO M Y_2000
DIAGNOSIS
FAILURE CODE DIAGNOSIS
CLEARING FAILURE CODES
Notice:To prevent Engine Control Module (ECM) damage, the key must be OFF when disconnecting or reconnecting
the power to the ECM (for example battery cable, ECM pigtail connector, ECM fuse, jumper cables, etc.)
Parameters listed in the table may not be exactly the same as your reading due to the type of instrument or other
factors. If a failure code is displayed during the “TROUBLE CODE” in scan tool check mode, check the circuit for the
code listed in the table below. For details of each code, turn to the page referred to under the “See Page” for the re-
spective “Failure Code” in the below table.
Failure codes should be cleared after repairs have been completed.
FAILURE CODES TABLE
Failure
codeSee
PageDescription
001F1 -- 66Engine coolant temperature sensor low voltage
011F1 -- 66Engine coolant temperature sensor high voltage
021F1 -- 66Engine coolant temperature sensor plausibility
031F1 -- 62Intake air temperature sensor low voltage
041F1 -- 62Intake air temperature sensor high voltage
051F1 -- 62Intake air temperature sensor plausibility
061F1 -- 66Engine coolant temperature insufficient for closed loop fuel control
081F1 -- 38System voltage too low
091F1 -- 62Mass air flow sensor plausibility
101F1 -- 62Mass air flow sensor low voltage
111F1 -- 62Mass air flow sensor high voltage
171F1 -- 23Crankshaft position sensor signal failure (no engine revolution signal)
181F1 -- 23Crankshaft position sensor signal failure (rpm > max. value)
191F1 -- 27Camshaft position senosr signal : No.1 cylinder recognition failure
201F1 -- 23Crankshaft position sensor signal failure (gap recognition failure)
211F1 -- 90Transmission coding failure
231F1 -- 88CAN communication failure : ASR/MSR
241F1 -- 88CAN communication failure : ABS
251F1 -- 94Communication with transponder missing
261F1 -- 88CAN communication failure : TCU (A/T only)
271F1 -- 88CAN communication failure : TOD (E32 only)
291F1 -- 89CAN communication failure : ID 200h not plausible
301F1 -- 89CAN communication failure : ID 208h not plausible
311F1 -- 89CAN communication failure : communication initialization failure
321F1 -- 78Engine rpm output circuit short circuit to battery
331F1 -- 78Engine rpm output circuit short circuit to ground or open
341F1 -- 43Fuel pump relay short circuit to battery
351F1 -- 43Fuel pump relay short circuit to ground or open
Page 178 of 2053

M162 ENGINE CONTROLS 1F1 -- 15
D AEW OO M Y_2000
FAILURE CODES TABLE (Cont’d)
Failure
codeSee
PageDescription
401F1 -- 51Purge control valve short circuit to battery
411F1 -- 51Purge control valve short circuit to ground or open
441F1 -- 72Cooling fan (HI) relay short circuit to power
451F1 -- 72Cooling fan (HI) relay short circuit to ground or open
541F1 -- 51Purge control circuit malfunction
561F1 -- 33No.1 knock sensor signal failure
571F1 -- 33No.2 knock sensor signal failure
581F1 -- 27Camshaft position sensor signal : No.1 cylinder synchronization failure
591F1 -- 89CAN communication failure : MSR data transmission not plausible
601F1 -- 89CAN communication failure : ASR data transmission not plausible
621F1 -- 71Clutch switch defective
641F1 -- 21No ignition voltage output (No.1 ignition coil)
651F1 -- 21No ignition voltage output (No.2 ignition coil)
661F1 -- 21No ignition voltage output (No.3 ignition coil)
671F1 -- 23Crankshaft position sensor adaptation failure
681F1 -- 35Random/Multiple Misfire
711F1 -- 39Starter signal recognition failure
721F1 -- 47No.1 injector short circuit to battery
731F1 -- 47No.1 injector short circuit to ground or open
741F1 -- 47No.2 injector short circuit to battery
751F1 -- 47No.2 injector short circuit to ground or open
761F1 -- 47No.3 injector short circuit to battery
771F1 -- 48No.3 injector short circuit to ground or open
781F1 -- 48No.4 injector short circuit to battery
791F1 -- 48No.4 injector short circuit to ground or open
801F1 -- 82Oxygen sensor high voltage
811F1 -- 83Bank 1 system short term fuel trim adaptation below lean threshold
821F1 -- 82Oxygen sensor no activity detected
831F1 -- 82Oxygen sensor not lean after overrun fuel shut -- off
841F1 -- 82Oxygen sensor slow response
851F1 -- 82Oxygen sensor heater failure
861F1 -- 82Oxygen sensor heater short circuit to battery
871F1 -- 82Oxygen sensor heater short circuit to ground or open
891F1 -- 82Oxygen sensor low voltage
931F1 -- 83Bank 1 system short term fuel trim adaptation above rich threshold
961F1 -- 83Bank 1 system short term fuel trim at rich stop
971F1 -- 83Bank 1 system short term fuel trim at lean stop
981F1 -- 83Bank 1 system idle adaptation failure (above rich threshold)
991F1 -- 83Bank 1 system idle adaptation failure (below lean threshold)
1001F1 -- 83Bank 1 system learning control failure (rich, low load)
1011F1 -- 83Bank 1 system learning control failure (lean, low load)
1021F1 -- 83Bank 1 system learning control failure (rich, high load)
Page 180 of 2053

M162 ENGINE CONTROLS 1F1 -- 17
D AEW OO M Y_2000
FAILURE CODES TABLE (Cont’d)
Failure
codeSee
PageDescription
1671F1 -- 69Both setpoint accelerator pedal position sensor defective
1851F1 -- 58Mass air flow sensor and throttle position sensor failure
1861F1 -- 92ECU failure (incompatible CPU)
1871F1 -- 92ECU failure (CPUs communication failure)
1881F1 -- 92ECU failure (CPU 2 configuration failure)
1891F1 -- 92ECU failure (CPU 2 fault)
1901F1 -- 92ECU failure (CPU run time failure between CPUs)
1921F1 -- 48No.5 injector short circuit to battery
1931F1 -- 48No.5 injector short circuit to ground or open
1941F1 -- 48No.6 injector short circuit to battery
1951F1 -- 48No.6 injector short circuit to ground or open
1981F1 -- 76Resonance flap short circuit to battery
1991F1 -- 76Resonance flap short circuit to ground or open
2261F1 -- 31Camshaft actuator short circuit to battery
2271F1 -- 31Camshaft actuator short circuit to ground or open
2281F1 -- 73A/C compressor relay short circuit to battery
2291F1 -- 73A/C compressor relay short circuit to ground or open
2311F1 -- 92ECU failure (CPU 2 cruise control message counter failure)
2321F1 -- 92Over decceleration limit (CPU 2)
2331F1 -- 92Over acceleration limit (CPU 2)
2341F1 -- 92Cruise control lever dual operation (CPU 2)
2351F1 -- 92Cruise control lever safety terminal failure (CPU 2)
2361F1 -- 92Unusual pedal position variation (CPU 2)
2371F1 -- 92Unusual throttle position variation (CPU 2)
2381F1 -- 92Unusual throttle controller monitor data comparison fault (CPU 2)
2391F1 -- 93Unusual accelerator pedal position sensor comparison fault (CPU 2)
2401F1 -- 93Throttle potentiometer comparision fault (CPU 2)
2411F1 -- 93Unusual CPU communication (CPU 2)
2421F1 -- 93Unusual CPU configuration (CPU 2)
2431F1 -- 93A/D converter failure (CPU 2)
2441F1 -- 93Accelerator pedal position sensor setpoint fault between CPU 1 and CPU 2
2451F1 -- 93Position controller setpoint fault between CPU 1 and CPU 2
2461F1 -- 93MSR setpoint fault between CPU 1 and CPU 2
2471F1 -- 93Idle control setpoint fault between CPU 1 and CPU 2
2481F1 -- 93A/Dconverteroverflow(CPU2)
2491F1 -- 93ROM fault (CPU 2)
2501F1 -- 93RAM fault (CPU 2)
2511F1 -- 93Cycle monitor fault (CPU 2)
Page 201 of 2053

1F1 -- 38 M162 ENGINE CONTROLS
D AEW OO M Y_2000
SYSTEM VOLTAGE
KAB1F190
Failure
CodeDescriptionTrouble AreaMaintenance Hint
08System voltage too low
Malfunction in recognition of
system source voltage.
Less than minimum 8 volts in
2,000 rpm below, or less than
10 volts in 2,000 rpm above.
DMonitoring the actual battery voltages
through the scan tool
DInspection the Engine Control Module
(ECM) pin 12, 11, 10, 5 about short
circuit or open with bad contact
DInspection the over voltage protection
relay
DInspection the battery
DInspection ECM
Page 203 of 2053

1F1 -- 40 M162 ENGINE CONTROLS
D AEW OO M Y_2000
FUEL SYSTEM
The function of the fuel metering system is to deliver the correct amount of fuel to the engine under all operating condi-
tions. The fuel is delivered to the engine by the individual fuel injectors mounted into the intake manifold near each
cylinder.
The main fuel control sensors are the Mass Air Flow (MAF) sensor and the oxygen (O2) sensors.
The MAF sensor monitors the mass flow of the air being drawn into the engine. An electrically heated element is
mounted in the intake air stream, where it is cooled by the flow of incoming air. Engine Control Module (ECM) modu-
lates the flow of heating current to maintain the temperature differential between the heated film and the intake air at a
constant level. The amount of heating current required to maintain the temperature thus provides an index for the
mass air flow. This concept automatically compensates for variations in air density, as this is one of the factors that
determines the amount of warmth that the surrounding air absorbs from the heated element. MAF sensor is located
between the air filter and the throttle valve.
Under high fuel demands, the MAF sensor reads a high mass flow condition, such as wide open throttle. The ECM
uses this information to enrich the mixture, thus increasing the fuel injector on-- time, to provide the correct amount of
fuel. When decelerating, the mass flow decreases. This mass flow change is sensed by the MAF sensor and read by
the ECM, which then decreases the fuel injector on-- time due to the low fuel demand conditions.
The O2 sensors are located in the exhaust pipe before catalytic converter. The O2 sensors indicate to the ECM the
amount of oxygen in the exhaust gas, and the ECM changes the air/fuel ratio to the engine by controlling the fuel
injectors. The best air/fuel ratio to minimize exhaust emissions is 14.7 to 1, which allows the catalytic converter to
operate most efficiently. Because of the constant measuring and adjusting of the air/fuel ratio, the fuel injection system
is called a “closed loop” system.
The ECM uses voltage inputs from several sensors to determine how much fuel to provide to the engine. The fuel is
delivered under one of several conditions, called ‘‘modes”.
Starting Mode
When the ignition is turned ON, the ECM turns the fuel pump relay on for 1 second. The fuel pump then builds fuel
pressure. The ECM also checks the Engine Coolant Temperature (ECT) sensor and the Throttle Position (TP) sensor
and determines the proper air/fuel ratio for starting the engine. This ranges from 1.5 to 1 at -- 36°C(--33°F) coolant
temperature to 14.7 to 1 at 94°C (201°F) coolant temperature. The ECM controls the amount of fuel delivered in the
starting mode by changing how long the fuel injector is turned on and off. This is done by ‘‘pulsing” the fuel injectors for
very short times.
Run Mode
The run mode has two conditions called ‘‘open loop” and ‘‘closed loop”.
Open Loop
When the engine is first started and it is above 690 rpm, thesystem goes into “open loop” operation. In “open loop”, the
ECM ignores the signal from the HO2S and calculates the air/fuel ratio based on inputs from the ECT sensor and the
MAF sensor. The ECM stays in “open loop” until the following conditions are met:
DThe O2 has a varying voltage output, showing that it is hot enough to operate properly.
DThe ECT sensor is above a specified temperature (22.5°C).
DA specific amount of time has elapsed after starting the engine.
Closed Loop
The specific values for the above conditions vary with different engines and are stored in the Electronically Erasable
Programmable Read -- Only Memory (EEPROM). When these conditions are met, thesystem goes into “closed loop”
operation. In “closed loop”, the ECM calculates the air/fuel ratio (fuel injector on-- time) based on the signals from the
O2 sensors. This allows the air/fuel ratio to stay very close to 14.7 to 1.
Acceleration Mode
The ECM responds to rapid changes in throttle position and airflow and provides extra fuel.
Deceleration Mode
The ECM responds to changes in throttle position and airflow and reduces the amount of fuel. When deceleration is
very fast, the ECM can cut off fuel completely for short periods of time.
Page 206 of 2053

M162 ENGINE CONTROLS 1F1 -- 43
D AEW OO M Y_2000
KAB1F210
Failure
CodeDescriptionTrouble AreaMaintenance Hint
34Fuel pump relay short
circuit to batteryWhen short circuit to power
sourceDInspection the Engine Control Module
(ECM) pin 33 about short circuit or
openwithbadcontact
35Fuel pump relay short
circuit to ground or openWhen short circuit to ground
or open
openwithbadcontact
DInspection the fuel pump relay
DInspection the ECM
Circuit Description
When the ignition switch is turned ON, the ECM will activate the pump relay and run the in -- tank fuel pump. The fuel
pump willoperate as long as the engine is cranking or running and the ECM is receiving ignition reference pulses.
If there are no reference pulses, the ECM will shut off the fuel pump within 2 seconds after the ignition switch is turned
ON, engine stopped or engine stalled.
Fuel Pump Relay Inspection
Measure the voltage between the ECM terminal No. 33 and Ground.
Ignition Switch : ON
0v(for1~2sec.)
Cranking0v
Page 207 of 2053

1F1 -- 44 M162 ENGINE CONTROLS
D AEW OO M Y_2000
Measure the Fuel Delivery from the Fuel Pump
1. Disconnect the return pipe from fuel distributor and insert the appropriate hose into it.
2. Place the hose end into the beaker with the minimum capacity of 1 Liter
3. Turn the ignition switch to “ON” position.
4. Connect the terminal No. 33 and No. 5 of ECM with a service wire.
5. Measure the fuel delivery from the fuel pump
Specified Value
1 Liter/max. 35 sec.
Notice:Check the fuel filter and fuel line when the fuel delivery is not within specified value.
Measure the Current Consumption of Fuel Pump
1. Remove the fuel pump relay from fuse and relay box in trunk, and turn the ignition switch to “ON” position.
2. Using a multimeter, measure the current consumption by connecting the terminal No. 30 and No. 87 of the fuel
pump relay connector.
Specified Value
5~9A
Notice:Replace the fuel pump relay if the measured value is over 9 A.
Page 226 of 2053

M162 ENGINE CONTROLS 1F1 -- 63
D AEW OO M Y_2000
Mass Air Flow Sensor Input Voltage Inspection
1. Turn the ignition switch to “ON” position.
2. Measure the signal voltage between the ECM pin No. 103 and No. 104.
Application
Specified Value
Ignition “ON”0.9 ~ 1.1 v
Engine StatusIdling1.3 ~ 1.7 v
(Coolant temperature is over 70°C)
Notice:If the measured value is not within the specified value, the possible cause may be in cable or MAF sensor in
itself. Perform the 5 volt power supply inspection procedures.
Mass Air Flow Sensor 5 volt Power Supply Inspection
1. Turn the ignition switch to “OFF” position.
2. Disconnect the HFM sensor connector.
3. Turn the ignition switch to “ON” position.
4. Measure the voltage between the ECM pin No. 108 and MAF sensor connecter terminal No. 3.
Specified Value
4.7~5.2v
Notice:If the measured value is not within the specified value, the possible cause may be in cable or ECM coupling.
5. Measure the voltage between the ECM pin No. 105 and MAF sensor connecter terminal No. 4.
Specified Value
4.7~5.2v
Notice:If the measured value is not within the specified value, the possible cause may be in cable or ECM coupling.
Mass Air Flow Sensor 12 volt Power Supply Inspection
1. Turn the ignition switch to “OFF” position.
2. Disconnect the HFM sensor connector.
3. Turn the ignition switch to “ON” position.
4. Measure the voltage between the ECM pin No. 105 and MAF sensor connecter terminal No. 2.
Specified Value
11 ~ 14 v
Notice:If the measured value is not within the specified value, the possible cause may be in cable or Over Voltage
Protection Relay (OVPR).
Page 235 of 2053

1F1 -- 72 M162 ENGINE CONTROLS
D AEW OO M Y_2000
COOLING FAN
KAB1F290
Failure
CodeDescriptionTrouble AreaMaintenance Hint
44Cooling fan (HI) relay
short circuit to powerCooling fan short circuit to
powerDInspection the Engine Control Module
(ECM) pin 35 about short circuit or
openwithbadcontact
45
Cooling fan (HI) relay
short circuit to ground or
openCooling fan short circuit to
ground or open
openwithbadcontact
DInspection the power source
DInspection the cooling fan
DInspection the ECM
Circuit Description
Ignition voltage is supplied directly to the cooling fan relay coil. The ECM controls the relay by grounding the control
circuit. When the ECM is commanding a command ON, the voltage of the control circuit should be low (near 0 volt).
When the ECM is commanding the control circuit should be high (near battery voltage). If the fault detection circuit
senses a voltage other than what is expected, the fault line status will change causing the fault code to set.