ECU INFINITI QX56 2011 Factory Service Manual
Page 2026 of 5598
EC-2
DIRECT INJECTION GASOLINE SYSTEM : Sys-
tem Description .......................................................
36
FUEL PRESSURE CONTROL ..................................39
FUEL PRESSURE CONTROL : System Diagram
...
39
FUEL PRESSURE CONTROL : System Descrip-
tion ..........................................................................
39
COOLING FAN CONTROL .................................... ...40
COOLING FAN CONTROL : System Diagram .......41
COOLING FAN CONTROL : System Description ...41
ELECTRIC IGNITION SYST EM ................................41
ELECTRIC IGNITION SYSTEM :
System Diagram ................................................. ...
42
ELECTRIC IGNITION SYSTEM : System De-
scription ..................................................................
42
INTAKE VALVE TIMING CONTROL ..................... ...43
INTAKE VALVE TIMING CONTROL : System Di-
agram .....................................................................
43
INTAKE VALVE TIMING CONTROL : System De-
scription ..................................................................
43
VVEL SYSTEM ....................................... ...................43
VVEL SYSTEM : System Dia gram ........................44
VVEL SYSTEM : System De scription .....................44
EVAPORATIVE EMISSION SYSTEM .................... ...45
EVAPORATIVE EMISSION SYSTEM : System
Diagram ..................................................................
45
EVAPORATIVE EMISSION SYSTEM : System
Description ..............................................................
45
AIR CONDITIONING CUT CONTROL ................... ...46
AIR CONDITIONING CUT CONTROL : System
Diagram ..................................................................
47
AIR CONDITIONING CUT CONTROL : System
Description ..............................................................
47
AUTOMATIC SPEED CONTROL DEVICE (ASCD) ...47
AUTOMATIC SPEED CONTROL DEVICE (AS-
CD) : System Diagram ............................................
48
AUTOMATIC SPEED CONTROL DEVICE (AS-
CD) : System Description .......................................
48
CAN COMMUNICATION ........................................ ...48
CAN COMMUNICATION : System Description ......48
OPERATION ................................................... ...49
AUTMATIC SPEED CONTROL DEVICE (ASCD) . ...49
AUTMATIC SPEED CONTROL DEVICE (ASCD)
: Switch Name and Function ...................................
49
ON BOARD DIAGNOSTIC (OBD) SYSTEM .....51
Diagnosis Description .......................................... ...51
GST (Generic Scan Tool) .......................................51
DIAGNOSIS SYSTEM (ECM) ............................52
DIAGNOSIS DESCRIPTION .................................. ...52
DIAGNOSIS DESCRIPTION : 1st Trip Detection
Logic and Two Trip Detection Logic ........................
52
DIAGNOSIS DESCRIPTION : DTC and Freeze
Frame Data .............................................................
52
DIAGNOSIS DESCRIPTION : Counter System ......53
DIAGNOSIS DESCRIPTION : Driving Pattern ........58
DIAGNOSIS DESCRIPTION : System Readiness
Test (SRT) Code .................................................. ...
58
DIAGNOSIS DESCRIPTION : Malfunction Indica-
tor Lamp (MIL) ..................................................... ...
60
On Board Diagnosis Function .................................60
CONSULT-III Function ............................................63
ECU DIAGNOSIS INFORMATION .............72
ECM ................................................................ ...72
Reference Value .................................................. ...72
Fail-safe ..................................................................93
DTC Inspection Priority Chart .................................96
DTC Index ...............................................................98
Test Value and Test Limit ..................................104
VVEL CONTROL MODULE .............................110
Reference Value .................................................. .110
WIRING DIAGRAM ...................................114
ENGINE CONTROL SYSTEM ........................ ..114
Wiring Diagram .................................................... .114
BASIC INSPECTION .................................135
DIAGNOSIS AND REPAIR WORKFLOW ...... ..135
Work Flow ............................................................ .135
Diagnostic Work Sheet .........................................138
BASIC INSPECTION ...................................... ..139
Work Procedure ................................................... .139
ADDITIONAL SERVICE WHEN REPLACING
ECM ..................................................................
143
Description ........................................................... .143
Work Procedure ....................................................143
ADDITIONAL SERVICE WHEN REPLACING
VVEL CONTROL MODULE .............................
144
Description ........................................................... .144
Work Procedure ....................................................144
VIN REGISTRATION ........................................145
Description ........................................................... .145
Work Procedure ....................................................145
ACCELERATOR PEDAL RELEASED POSI-
TION LEARNING ............................................ ..
146
Description ........................................................... .146
Work Procedure ....................................................146
THROTTLE VALVE CLOSED POSITION
LEARNING .......................................................
147
Description ........................................................... .147
Revision: 2010 May2011 QX56
Page 2034 of 5598
EC-10
< PRECAUTION >[VK56VD]
PRECAUTIONS
CAUTION:
Comply with the following cautions to
prevent any error and malfunction.
Install the xenon bulb securely. (Ins ufficient bulb socket installation may melt the bulb, the connec-
tor, the housing, etc. by high-v oltage leakage or corona discharge.)
Never perform HID circuit in spection with a tester.
Never touch the xenon bulb glass with ha nds. Never put oil and grease on it.
Dispose of the used xenon bulb after packing it in thick vinyl without breaking it.
Never wipe out dirt and cont amination with organic solven t (thinner, gasoline, etc.).
On Board Diagnostic (OBD) System of Engine and A/TINFOID:0000000006217652
The ECM has an on board diagnostic system. It will illuminate the malfunction indicator lamp (MIL) to warn the
driver of a malfunction causing emission deterioration.
CAUTION:
Always turn the ignition switch OFF and disconnect the negative battery cable before any repair or
inspection work. The open/short circuit of related sw itches, sensors, solenoid valves, etc. will cause
the MIL to illuminate.
Always connect and lock the conn ectors securely after work. A loose (unlocked) connector will
cause the MIL to illuminate due to the open circuit. (Be sure the connector is free from water, grease,
dirt, bent terminals, etc.)
Certain systems and components, especially those related to OBD, may use a new style slide-lock-
ing type harness connector. For descripti on and how to disconnect, refer to EC-51, "
Diagnosis
Description".
Always route and secure the harnesses properly afte r work. The interference of the harness with a
bracket, etc. may cause the MIL to illu minate due to the short circuit.
Always connect rubber tubes properly after work. A misconnected or disconnected rubber tube may
cause the MIL to illuminate due to the malfunction of the EVAP system or fuel injection system, etc.
Always erase the unnecessary malfunction information (repairs completed) from the ECM and TCM
(Transmission control module) before re turning the vehicle to the customer.
General PrecautionsINFOID:0000000006217653
Always use a 12 volt battery as power source.
Never attempt to disconnect battery cables while engine is
running.
Before connecting or disconnecting the ECM harness con-
nector, turn ignition switch OFF and disconnect negative bat-
tery cable. Failure to do so may damage the ECM because
battery voltage is applied to ECM even if ignition switch is
turned OFF.
Before removing parts, turn ig nition switch OFF and then dis-
connect battery ground cable.
Never disassemble ECM.
If a battery cable is disconnected, the memory will return to
the ECM value.
The ECM will now start to self-control at its initial value. Thus,
engine operation can vary slight ly in this case. However, this
is not an indication of a ma lfunction. Never replace parts
because of a slight variation.
If the battery is disconnected, the following emission-related
diagnostic information will be lost within 24 hours.
- Diagnostic trouble codes
- 1st trip diagnostic trouble codes
- Freeze frame data
- 1st trip freeze frame data
- System readiness test (SRT) codes
- Test values
SEF289H
JMBIA0057ZZ
Revision: 2010 May2011 QX56
Page 2035 of 5598
PRECAUTIONSEC-11
< PRECAUTION > [VK56VD]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
When connecting ECM harness connector (A), fasten (B) it
securely with a lever as far as it will go as shown in the figure.
-ECM (1)
- Loosen (C)
When connecting or disconnect ing pin connectors into or
from ECM, never damage pin terminals (bends or break).
Check that there are not any bends or breaks on ECM pin ter-
minal, when connect ing pin connectors.
Securely connect ECM harness connectors.
A poor connection can cause an extremely high (surge) volt-
age to develop in coil and cond enser, thus resulting in dam-
age to ICs.
Keep engine control system harness at least 10 cm (4 in) away
from adjacent harness, to prevent engine control system mal-
functions due to receiving externa l noise, degraded operation
of ICs, etc.
Keep engine control system parts and harness dry.
Before replacing ECM, perform ECM Terminals and Reference
Value inspection and check that ECM functions properly.
Refer to EC-72, "
Reference Value".
Handle mass air flow sensor carefully to avoid damage.
Never clean mass air flow sensor with any type of detergent.
Never disassemble electric th rottle control actuator.
Even a slight leakage in the air intake system can cause seri-
ous incidents.
Never shock or jar the camshaf t position sensor, crankshaft
position sensor.
After performing each TROUBL E DIAGNOSIS, perform DTC
Confirmation Procedure or Component Function Check.
The DTC should not be displ ayed in the DTC Confirmation
Procedure if the repair is completed. The Component Func-
tion Check should be a good resu lt if the repair is completed.
JMBIA0029ZZ
PBIB0090E
MEF040D
SEF217U
Revision: 2010 May2011 QX56
Page 2058 of 5598
EC-34
< SYSTEM DESCRIPTION >[VK56VD]
STRUCTURE AND OPERATION
On Board Refueling V apor Recovery (ORVR)
INFOID:0000000006217696
From the beginning of refueling, the air and vapor insi de the fuel tank go through refueling EVAP vapor cut
valve and EVAP/ORVR line to the EVAP canister. The vapor is absorbed by the EVAP canister and the air is
released to the atmosphere.
When the refueling has reached the full level of the fuel tank, the refueling EVAP vapor cut valve is closed and
refueling is stopped because of auto shut-off. The vapor which was absorbed by the EVAP canister is purged
during driving.
WARNING:
When conducting inspections below, be sure to observe the following:
Put a “CAUTION: FLAMMABLE” sign in workshop.
Never smoke while servicing fuel system. Keep open flames and sparks away from work area.
Always furnish the workshop with a CO
2 fire extinguisher.
CAUTION:
Before removing fuel line parts, carry out the following procedures:
- Put drained fuel in an explosion-pr oof container and put lid on securely.
- Release fuel pressure from fuel line. Refer to EC-153, "
Work Procedure".
- Disconnect battery ground cable.
Always replace O-ring when the fuel gauge retainer is removed.
Never kink or twist hose and tube when they are installed.
Never tighten hose and clamps excessively to avoid damaging hoses.
After installation, run engine an d check for fuel leaks at connections.
Never attempt to top off the fuel tank after the fuel pump nozzle shuts off automatically.
Continued refueling may cause fu el overflow, resulting in fuel spray and possibly a fire.
PBIB1068E
Revision: 2010 May2011 QX56
Page 2075 of 5598
ON BOARD DIAGNOSTIC (OBD) SYSTEMEC-51
< SYSTEM DESCRIPTION > [VK56VD]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
ON BOARD DIAGNOSTIC (OBD) SYSTEM
Diagnosis DescriptionINFOID:0000000006217720
This system is an on board diagnostic system that re
cords exhaust emission-related diagnostic information
and detects a sensors/actuator-related malfunction. A ma lfunction is indicated by the malfunction indicator
lamp (MIL) and stored in ECU memory as a DTC. The diagnostic information can be obtained with the diag-
nostic tool (GST: Generic Scan Tool).
GST (Generic Scan Tool)INFOID:0000000006217721
When GST is connected with a data link connector equipped on the vehicle side, it will communicate with the
control unit equipped in the vehicle and then enable va rious kinds of diagnostic tests. Refer to GI-48, "
Descrip-
tion".
NOTE:
Service $0A is not applied for r egions where it is not mandated.
Revision: 2010 May2011 QX56
Page 2076 of 5598
EC-52
< SYSTEM DESCRIPTION >[VK56VD]
DIAGNOSIS SYSTEM (ECM)
DIAGNOSIS SYSTEM (ECM)
DIAGNOSIS DESCRIPTION
DIAGNOSIS DESCRIPTION : 1st Trip Detect
ion Logic and Two Trip Detection Logic
INFOID:0000000006217722
When a malfunction is detected for the first time, 1st tr ip DTC and 1st trip Freeze Frame data are stored in the
ECM memory. The MIL will not illuminate at this stage. <1st trip>
If the same malfunction is detected again during the next drive, the DTC and Freeze Frame data are stored in
the ECM memory, and the MIL illuminates. The MIL illu minates at the same time when the DTC is stored.
<2nd trip> The “trip” in the “Two Trip Detection Logic” means a driving mode in which self-diagnosis is per-
formed during vehicle operation. Specific on board diagnos tic items will cause the ECM to illuminate or blink
the MIL, and store DTC and Freeze Frame data, even in the 1st trip, as shown below.
×: Applicable —: Not applicable
DIAGNOSIS DESCRIPTION : DT C and Freeze Frame DataINFOID:0000000006217723
DTC AND 1ST TRIP DTC
The 1st trip DTC (whose number is the same as the DT C number) is displayed for the latest self-diagnostic
result obtained. If the ECM memory was cleared previously , and the 1st trip DTC did not recur, the 1st trip DTC
will not be displayed.
If a malfunction is detected during the 1st trip, the 1st trip DTC is saved in the ECM memory. The MIL will not
light up (two trip detection logic). If the same malfunc tion is not detected in the 2nd trip (meeting the required
driving pattern), the 1st trip DTC is cleared from the ECM memory. If the same malfunction is detected in the
2nd trip, both the 1st trip DTC and DTC are saved in the ECM memory and the MIL lights up. In other words,
the DTC is stored in the ECM memory and the MIL light s up when the same malfunction occurs in two consec-
utive trips. If a 1st trip DTC is stored and a non-diagnostic operation is performed between the 1st and 2nd
trips, only the 1st trip DTC will continue to be stored. Fo r malfunctions that blink or light up the MIL during the
1st trip, the DTC and 1st trip DTC are stored in the ECM memory.
For malfunctions in which 1st trip DTCs are displayed, refer to EC-98, "
DTC Index". These items are required
by legal regulations to continuous ly monitor the system/component. In addi tion, the items monitored non-con-
tinuously are also displayed on CONSULT-III.
1st trip DTC is specified in Service $07 of SAE J1979/ ISO 15031-5. 1st trip DTC detection occurs without illu-
minating the MIL and therefore does not warn the driver of a malfunction.
When a 1st trip DTC is detected, check, print out or write down and erase (1st trip) DTC and Freeze Frame
data as specified in Work Flow procedure Step 2, refer to EC-135, "
Work Flow". Then perform DTC Confirma-
tion Procedure or Component Function Check to try to duplicate the malfunction. If the malfunction is dupli-
cated, the item requires repair.
FREEZE FRAME DATA AND 1ST TRIP FREEZE FRAME DATA
The ECM records the driving conditions such as fuel system status, calculated load value, engine coolant tem-
perature, short term fuel trim, long term fuel trim, engine speed, vehicle speed, absolute throttle position, base
fuel schedule and intake air temperature at the moment a malfunction is detected.
Data which are stored in the ECM memory, along with the 1st trip DTC, are called 1st trip freeze frame data.
The data, stored together with the DTC data, are ca lled freeze frame data and displayed on CONSULT-III or
GST. The 1st trip freeze frame data can only be displayed on the CONSULT-III screen.
Items MIL DTC 1st trip DTC
1st trip 2nd trip 1st trip
displaying 2nd trip
displaying 1st trip
displaying 2nd trip
displaying
Blinking Illuminate Blinking Illuminate
Misfire (Possible three way catalyst
damage) — DTC: P0300 - P0308 is
being detected ×
——— — — ×—
Misfire (Possible three way catalyst
damage) — DTC: P0300 - P0308 is
being detected ——
×—— ×——
One trip detection diagnoses (Re-
fer to EC-98, "
DTC Index".) —
×—— ×———
Except above — — — ×— ×× —
Revision: 2010 May2011 QX56
Page 2077 of 5598
DIAGNOSIS SYSTEM (ECM)EC-53
< SYSTEM DESCRIPTION > [VK56VD]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
Only one set of freeze frame data (either 1st trip freez
e frame data or freeze frame data) can be stored in the
ECM. 1st trip freeze frame data is stored in the ECM me mory along with the 1st trip DTC. There is no priority
for 1st trip freeze frame data and it is updated each time a different 1st trip DTC is detected. However, once
freeze frame data (2nd trip detection/MIL on) is stored in the ECM memory, 1st trip freeze frame data is no
longer stored. Remember, only one set of freeze frame data can be stored in the ECM. The ECM has the fol-
lowing priorities to update the data.
For example, the EGR malfunction (Priority: 2) was detected and the freeze frame data was saved in the 2nd
trip. After that when the misfire (Priority: 1) is detected in another trip, the freeze frame data will be updated
from the EGR malfunction to the misfire. The 1st trip freeze frame data is updated each time a different mal-
function is detected. There is no priority for 1st tr ip freeze frame data. However, once freeze frame data is
stored in the ECM memory, 1st trip freeze data is no longer stored (because only one freeze frame data or 1st
trip freeze frame data can be stored in the ECM). If fr eeze frame data is stored in the ECM memory and freeze
frame data with the same priority occurs later, the first (original) freeze frame data remains unchanged in the
ECM memory.
Both 1st trip freeze frame data and freeze frame dat a (along with the DTCs) are cleared when the ECM mem-
ory is erased.
DIAGNOSIS DESCRIPTION : Counter SystemINFOID:0000000006217724
RELATIONSHIP BETWEEN MIL, 1ST TRIP DTC, DTC, AND DETECTABLE ITEMS
When a malfunction is detected for the first time, the 1st trip DTC and the 1st trip freeze frame data are
stored in the ECM memory.
When the same malfunction is detected in two consec utive trips, the DTC and the freeze frame data are
stored in the ECM memory, and the MIL will come on.
The MIL will turn OFF after the vehicle is driven 3 ti mes (driving pattern B) with no malfunction. The drive is
counted only when the recorded driving pattern is met (as stored in the ECM). If another malfunction occurs
while counting, the counter will reset.
The DTC and the freeze frame data will be stored until the v ehicle is driven 40 times (driving pattern A) with-
out the same malfunction recurring (except for Misfire and Fuel Injection System). For Misfire and Fuel Injec-
tion System, the DTC and freeze frame data will be stored until the vehicle is driven 80 times (driving pattern
C) without the same malfunction recurring. The “TIM E” in “SELF-DIAGNOSTIC RESULTS” mode of CON-
SULT-III will count the number of times the vehicle is driven.
The 1st trip DTC is not displayed when the se lf-diagnosis results in OK for the 2nd trip.
COUNTER SYSTEM CHART
For details about patterns B and C under “Fuel Inject ion System” and “Misfire”, see “EXPLANATION FOR
DRIVING PATTERNS FOR “MISFIRE <EXHAUST QUAL ITY DETERIORATION>”, “FUEL INJECTION SYS-
TEM”.
For details about patterns A and B under Other, see “EXPLANATION FOR DRIVING PATTERNS FOR “MIS-
FIRE <EXHAUST QUALITY DETERIOR ATION>”, “FUEL INJECTION SYSTEM”.
*1: Clear timing is at the moment OK is detected.
*2: Clear timing is when the same malfunction is detected in the 2nd trip.
Relationship Between MIL, DTC, 1st Trip DTC and Dr iving Patterns for “Misfire <Exhaust Quality De-
terioration>”, “Fuel Injection System”
Priority Items
1 Freeze frame data Misfire — DTC: P0300 - P0308
Fuel Injection System Function — DTC: P0171, P0172, P0174, P0175
2 Except the above items
3 1st trip freeze frame data
Items Fuel Injection System Misfire Other
MIL (turns OFF) 3 (pattern B) 3 (pattern B) 3 (pattern B)
DTC, Freeze Frame Data (no display) 80 (p attern C) 80 (pattern C) 40 (pattern A)
1st Trip DTC (clear) 1 (pattern C), *1 1 (pattern C), *1 1 (pattern B)
1st Trip Freeze Frame Data (clear) *1, *2 *1, *2 1 (pattern B)
Revision: 2010 May2011 QX56
Page 2078 of 5598
EC-54
< SYSTEM DESCRIPTION >[VK56VD]
DIAGNOSIS SYSTEM (ECM)
Explanation for Driving Patterns for “Misfire <Exhaust Quality Deterioration>”, “Fuel Injection System”
<Driving Pattern B>
Driving pattern B means the vehicl
e operation as per the following:
All components and systems should be monito red at least once by the OBD system.
*1: When the same malfunction is de-
tected in two consecutive trips, MIL
will light up. *2: MIL will turn OFF after vehicle is driv-
en 3 times (pattern B) without any
malfunctions. *3: When the same malfunction is de-
tected in two consecutive trips, the
DTC and the freeze frame data will be
stored in ECM.
*4: The DTC and the freeze frame data will not be displayed any longer after
vehicle is driven 80 times (pattern C)
without the same malfunction. (The
DTC and the freeze frame data still
remain in ECM.) *5: When a malfunction is detected for
the first time, the 1st trip DTC and the
1st trip freeze frame data will be
stored in ECM. *6: The 1st trip DTC and the 1st trip
freeze frame data will be cleared at
the moment OK is detected.
*7: When the same malfunction is de- tected in the 2nd trip, the 1st trip
freeze frame data will be cleared. *8: 1st trip DTC will
be cleared when ve-
hicle is driven once (pattern C) with-
out the same malfunction after DTC
is stored in ECM.
JMBIA1417GB
Revision: 2010 May2011 QX56
Page 2080 of 5598
EC-56
< SYSTEM DESCRIPTION >[VK56VD]
DIAGNOSIS SYSTEM (ECM)
*1: When the same malfunction is de-
tected in two consecutive trips, MIL
will light up. *2: MIL will turn OFF after vehicle is driv-
en 3 times (pattern B) without any
malfunctions. *3: When the same malfunction is de-
tected in two consecutive trips, the
DTC and the freeze frame data will be
stored in ECM.
JMBIA1418GB
Revision: 2010 May2011 QX56
Page 2083 of 5598
DIAGNOSIS SYSTEM (ECM)EC-59
< SYSTEM DESCRIPTION > [VK56VD]
C
D
E
F
G H
I
J
K L
M A
EC
NP
O
The SRT will also indicate “INCMP” if the self-diagnosis
memory is erased for any reason or if the ECM mem-
ory power supply is interrupted for several hours.
If, during the state emissions inspection, the SRT indica tes “CMPLT” for all test items, the inspector will con-
tinue with the emissions test. However, if the SRT i ndicates “INCMP” for one or more of the SRT items the
vehicle is returned to the customer untested.
NOTE:
If MIL is ON during the state emissi ons inspection, the vehicle is also returned to the customer untested even
though the SRT indicates “CMPLT” for all test items. T herefore, it is important to check SRT (“CMPLT”) and
DTC (No DTCs) before the inspection.
SRT SET TIMING
SRT is set as “CMPLT” after self-diagnosis has been performed one or more times. Completion of SRT is
done regardless of whether the result is OK or NG. T he set timing is different between OK and NG results and
is shown in the table below.
OK: Self-diagnosis is carried out and the result is OK.
NG: Self-diagnosis is carried out and the result is NG.
—: Self-diagnosis is not carried out.
When all SRT related self-diagnoses show OK results in a single cycle (Ignition OFF-ON-OFF), the SRT will
indicate “CMPLT”. → Case 1 above
When all SRT related self-diagnoses show OK results through several different cycles, the SRT will indicate
“CMPLT” at the time the respective se lf-diagnoses have at least one OK result. → Case 2 above
If one or more SRT related self-diagnoses show NG results in 2 consecutive cycles, the SRT will also indicate
“CMPLT”. → Case 3 above
The table above shows that the minimum number of cycles for setting SRT as “INCMP” is the number one (1)
for each self-diagnosis (Case 1 & 2) or the number two (2) for one of self-diagnoses (Case 3). However, in
preparation for the state emissions inspection, it is unnecessary for each self-diagnosis to be executed twice
(Case 3) for the following reasons:
The SRT will indicate “CMPLT” at the time the respective self-diagnoses have one (1) OK result.
The emissions inspection requires “CMPLT” of the SRT only with OK self-diagnosis results.
During SRT driving pattern, the 1st trip DTC (NG) is detected prior to “CMPLT” of SRT and the self-diagnosis
memory must be erased from the ECM after repair.
If the 1st trip DTC is erased, all the SRT will indicate “INCMP”.
NOTE:
SRT can be set as “CMPLT” together with the DTC(s) . Therefore, DTC check must always be carried out
prior to the state emission inspection even though the SRT indicates “CMPLT”.
Self-diagnosis result Example
Diagnosis Ignition cycle
← ON →OFF ← ON →OFF ← ON →OFF ← ON →
All OK Case 1 P0400 OK (1) — (1) OK (2) — (2) P0402 OK (1) — (1) — (1) OK (2)
P1402 OK (1) OK (2) — (2) — (2)
SRT of EGR “CMPLT” “CMPLT” “CMPLT” “CMPLT”
Case 2 P0400 OK (1) — (1) — (1) — (1) P0402 — (0) — (0) OK (1) — (1)
P1402 OK (1) OK (2) — (2) — (2)
SRT of EGR “INCMP” “INCMP” “CMPLT” “CMPLT”
NG exists Case 3 P0400 OK OK — — P0402 — — — —
P1402 NG — NG NG
(Consecutive
NG)
(1st trip) DTC 1st trip DTC — 1st trip DTC
DTC
(= MIL ON)
SRT of EGR “INCMP” “INCMP” “INCMP” “CMPLT”
Revision: 2010 May2011 QX56